Ausgewählte Publikationen
Ausgewählte Übersichtsarbeiten und Kommentare
Phosphoantigen recognition by Vγ9Vδ2 T cells. Herrmann T, Karunakaran MM. Eur J Immunol. 2024 Aug 15:e2451068. doi: 10.1002/eji.202451068.
Caveat: Monoclonal antibodies 20.1 and 103.2 bind all human BTN3A proteins and are not suited to study BTN3A1-specific features. Herrmann T. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2304065120. doi: 10.1073/pnas.2304065120. Epub 2023 May 8. PMID: 37155844
Butyrophilins: γδ T Cell Receptor Ligands, Immunomodulators and More. Herrmann T, Karunakaran MM. Front Immunol. 2022 Mar 17;13:876493. doi: 10.3389/fimmu.2022.876493. eCollection 2022. PMID: 35371078
Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. Eberl M, Oldfield E, Herrmann T. Immunother Adv. 2021 Apr 5;1(1):ltab005. doi: 10.1093/immadv/ltab005. eCollection 2021 Jan. PMID: 35919736
A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Herrmann T, Karunakaran MM, Fichtner AS. Immunol Rev. 2020 Nov;298(1):218-236. doi: 10.1111/imr.12919. Epub 2020 Sep 27. PMID: 32981055
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Herrmann T, Fichtner AS, Karunakaran MM. Cells. 2020 Jun 9;9(6):1433. doi: 10.3390/cells9061433. PMID: 32527033
The Vγ9Vδ2 T Cell Antigen Receptor and Butyrophilin-3 A1: Models of Interaction, the Possibility of Co-Evolution, and the Case of Dendritic Epidermal T Cells. Karunakaran MM, Herrmann T. Front Immunol. 2014 Dec 19;5:648. doi: 10.3389/fimmu.2014.00648. eCollection 2014. PMID: 25566259
Thymic development and repertoire selection: the rat perspective. Hünig T, Torres-Nagel N, Mehling B, Park HJ, Herrmann T. Immunol Rev. 2001 Dec;184:7-19. doi: 10.1034/j.1600-065x.2001.1840102.x. PMID: 12086323
The CD8 T cell response to staphylococcal enterotoxins. Herrmann T, MacDonald HR. Semin Immunol. 1993 Feb;5(1):33-9. doi: 10.1006/smim.1993.1005. PMID: 8467093
T cell recognition of superantigens. Herrmann T, MacDonald HR. Curr Top Microbiol Immunol. 1991;174:21-38. doi: 10.1007/978-3-642-50998-8_2. PMID: 1724957
Ausgewählte Originalforschungsarbeiten zu Vγ9Vδ2 T Zellen:
A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Nat Commun. 2023 Nov 22;14(1):7617. doi: 10.1038/s41467-023-41938-8. PMID: 37993425 Free PMC article.
Phosphoantigen sensing combines TCR-dependent recognition of the BTN3A IgV domain and germline interaction with BTN2A1. Willcox CR, Salim M, Begley CR, Karunakaran MM, Easton EJ, von Klopotek C, Berwick KA, Herrmann T, Mohammed F, Jeeves M, Willcox BE. Cell Rep. 2023 Apr 25;42(4):112321. doi: 10.1016/j.celrep.2023.112321. Epub 2023 Mar 28. PMID: 36995939
BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, Herrmann T, Imbert C, Gorvel L, Vey N, Briantais A, le Floch AC, Olive D. Cell Rep. 2021 Jul 13;36(2):109359. doi: 10.1016/j.celrep.2021.109359. PMID: 34260935 Free article.
Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vγ9Vδ2 TCR and Is Essential for Phosphoantigen Sensing. Karunakaran MM, Willcox CR, Salim M, Paletta D, Fichtner AS, Noll A, Starick L, Nöhren A, Begley CR, Berwick KA, Chaleil RAG, Pitard V, Déchanet-Merville J, Bates PA, Kimmel B, Knowles TJ, Kunzmann V, Walter L, Jeeves M, Mohammed F, Willcox BE, Herrmann T. Immunity. 2020 Mar 17;52(3):487-498.e6. doi: 10.1016/j.immuni.2020.02.014. Epub 2020 Mar 9. PMID: 32155411
Alpaca (Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Fichtner AS, Karunakaran MM, Gu S, Boughter CT, Borowska MT, Starick L, Nöhren A, Göbel TW, Adams EJ, Herrmann T. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6697-6707. doi: 10.1073/pnas.1909474117. Epub 2020 Mar 5. PMID: 32139608
TCR repertoire analysis reveals phosphoantigen-induced polyclonal proliferation of Vγ9Vδ2 T cells in neonates and adults. Fichtner AS, Bubke A, Rampoldi F, Wilharm A, Tan L, Steinbrück L, Schultze-Florey C, von Kaisenberg C, Prinz I, Herrmann T, Ravens S. J Leukoc Biol. 2020 Jun;107(6):1023-1032. doi: 10.1002/JLB.1MA0120-427RR. Epub 2020 Feb 17. PMID: 32064671
The Armadillo (Dasypus novemcinctus): A Witness but Not a Functional Example for the Emergence of the Butyrophilin 3/Vγ9Vδ2 System in Placental Mammals. Fichtner AS, Karunakaran MM, Starick L, Truman RW, Herrmann T. Front Immunol. 2018 Feb 23;9:265. doi: 10.3389/fimmu.2018.00265. eCollection 2018. PMID: 29527206
Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Starick L, Riano F, Karunakaran MM, Kunzmann V, Li J, Kreiss M, Amslinger S, Scotet E, Olive D, De Libero G, Herrmann T. Eur J Immunol. 2017 Jun;47(6):982-992. doi: 10.1002/eji.201646818. Epub 2017 Apr 27. PMID: 28386905
Vγ9Vδ2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Riaño F, Karunakaran MM, Starick L, Li J, Scholz CJ, Kunzmann V, Olive D, Amslinger S, Herrmann T. Eur J Immunol. 2014 Sep;44(9):2571-6. doi: 10.1002/eji.201444712. Epub 2014 Jun 30. PMID: 24890657